This worked for me

Fiona Allan
27 June 2023

During this session

I'm not going to tell you what to teach

BUT

Please don't teach them the hardest topics at GCSE when they probably have gaps in their basic knowledge

You don't sort a house with subsidence by redoing the roof!

During this session

I'm not going to tell you what to teach

We are going to think about how we should be interacting with our students during the first half term

Our students

- Probably think they are failures
- Probably aren't enthusiastic about learning Maths
- Probably think they are never going to need Maths again after college
- Probably have lots of misconceptions and gaps in their early knowledge

At the start of the year

- They got extra help from their school - did their school expect them to fail?
- They got their results in late August
- They were told they had to resit
- They feel failures - they don't want to resit
- They haven't done any Maths since May
- And then we give them a test at the start of the year....

Find out what they know 1. Posters

- On a sheet of paper, write down everything you know about, for example, triangles.
(Activity can be done in groups, or in pairs or individually. Sheets can be passed round for others to edit/add to.)

During the first few weeks

- Encourage them to believe that they can improve.
- Tell them that you really believe that they can all improve. (Research has shown that everyone can improve.*)
- Tell them about all your successful students in previous years.
- Tell them they are doing well - praise, praise, praise!

During the first few weeks Give them success

- At the end of each lesson - give them five easy questions to answer.
- Make them work against a countdown - but make sure they will be able to complete the work (or almost complete it).
- If possible, get a colleague who teaches a student a different subject to tell them how they have heard that they are doing well.

During the first few weeks Make lessons fun

Teach them a few Maths magic tricks

During the first few weeks Make lessons fun

1. Think of any three-digit number in which each of the digits is the same. Examples include 333, 666, 777, and 999.
2. Add up the digits.
3. Divide the three-digit number by the answer in Step 2

And the answer is

During the first few weeks Make lessons fun

- Take any three-digit number and write it twice to make a six-digit number. For example, 371371 or 552552.
- Divide the number by 7.
- Divide it by 11 .
- Divide it by 13.
(The order in which you do the division is unimportant!)

And the answer is ?

During the first few weeks Make lessons fun

Teach them a few Maths magic tricks and use jokes.

(Sign up for Chris Smith's weekly newsletter: aap03102@gmail.com and for Andrew Jeffrey's newsletter: info@andrewjeffrey.co.uk)

I HAD AN ARGUMENT WITH A 90 DEGREE ANGLE...

TURNS OUT IT WAS RIGHT.

fiona.m.allan@gmail.com

Why are obtuse angles

 so depressed?Because they're never right.

During the first few weeks Show that Maths is useful

[^0]
Find out what they know 2. NCETM Checkpoints

COVID RECOVERY

CHECKPOINTS

Diagnostic maths activities to help teachers develop their assessment of students' prior learning for KS3

Checkpoint 1: Arranging digits

, 76018

Use the digit cards to create:
a) the largest possible 5-digit number
b) the smallest possible 5-digit number
c) the 5 -digit number that is closest to 60000
d) the 5-digit number that is closest to 90000
e) a number with 76 tens
f) a number with 76 hundreds

Using these cards, how many different 5-digit numbers can you create between 50000 and 70000 ? How do you know?

Make them do the work Teacher-Pupil

Practise routine and exam questions (with thanks to Tim Robbins, QMC, Basingstoke).

Make them do the work Activities

Pass it on / Maths Consequences

(Can be used with any operation that can be done and then undone.)

Make them do the work Routine practice

Online practice

Make them do the work Ask them to prepare for lessons

https://www.youtube.com/watch?v=Wt3IrBqq6Uc

Don't reinvent the wheel!

- The NCETM KS3 Mastery Professional Development Materials are made up of six themes.
- The themes cover 17 core concepts.
- Each PowerPoint concentrates on one key idea and includes:
$>$ Prior learning;
$>$ Misconceptions;
$>$ Representations and structure;
$>$ Key vocabulary.

Don't reinvent the wheel!

The structure of the number system Theme 1	Operating on number Theme 2	Multiplicative reasoning Theme 3
Sequences and graphs Theme 4	Statistics and probability Theme 5	Geometry Theme 6

Example 3

> Libby rolled each of three dice over 200 times. These bar charts show the frequency of each score.

Dice B

Dice C

Which dice would you use if you were one step away from finishing a game and needed to roll a 5 to win? Explain why.

Find out what they know
 3. Activities

Get into line!

Mind your language

Do they understand what you are talking about?

ABOUT US

Lexnmereaboutus.

PROVIDING EXCELLENT SERVICE SINCE 2014

What do you mean?

On a piece of paper, draw a sketch to show this instruction:
'Always label your axes'

Always label your axes

a. IIIIGraphlwn.cem
fiona.m.allan@gmail.com

Words that have different meanings

acute	factor	multiple	regular
arc	flat	natural	reverse
area	foot	nature	right
average	form	negative	root
bar	function	net	ruler
base	general	none (heard as nun)	satisfy
box plot	gill	normal	sector
capacity	gross	notation	segment
cell	hour (sounds like our)	obtuse	series
chord	imaginary	odd	show
common	improper	of	similar
commute	index	one (heard as won)	sin/sine
complement (compliment)	integrate	operation	sketch
complex	integration	opposite	solution
conversion	interest	order	solve
coordinate	interval	origin	space
cos	inverse	outlier	square
cosine (cousin)	irrational	pi(e)	stationary (heard as stationery)
cycle	irregular	plane	stem
degree	key	plot	stem and leaf
deviation	kite	point	steps
difference	leaf	positive	subject
differentiate	legend	power	substitution
differentiation	line	prime	sum (heard as some)
digit	log	problem	supplement
direct	log table	product	table
divide	magic	proof	tail
dot	mass	prove	take away
evaluate	mean	quotient	tan
even	metre (meter)	radical	tangent
ex (x)	minute	range	transformation
expand	mode	rational	translation
explain	multiple	real	volume
exponent	natural	reflect	vulgar
express	nature	reflection	wave
expression	negative	reflex	weight (heard as wait)
face	net	regression	yard

Find out what they know
 3. What questions could you ask?

Write 36 in the middle of the sheet of paper. What questions could you ask with 36 as the answer?

OR

A game uses 15 coloured cards. There are:

- 5 red (R) cards numbered 1 to 5,
- 5 yellow (Y) cards numbered 1 to 5 ,
- 5 pink (P) cards numbered 1 to 5 .

The cards are all placed in a box.
What questions could youask about this information?

Give them the tools they need

- Bar models
- Ratio tables
- Double number lines

Give them the tools they need The bar model

The bar model 'supports the transformation of real-life problems into a mathematical form and can bridge the gap between concrete mathematical experiences and abstract representations.

The bar model
 Four operations

Teaching the Four Operations with Bar Models

$\underset{\substack{\text { THIRD SPACE } \\ \text { LEARNING }}}{\text { and }}$

The bar model Percentages

A computer game is reduced in a sale by 30%. Its reduced price is $£ 77$. How much was the original price?

Dividing the bar into ten equal pieces allows us to represent 30% and keep the other pieces the same size.
$£ 77 \div 7=£ 11$
The original cost (the whole bar) is $£ 11 \times 10=£ 110$

The bar model Ratio

A gardener plants tulip bulbs in a flower bed.

She plants 3 red bulbs for every 4 white bulbs.

She plants 60 red bulbs.

How many white bulbs does she plant?

The bar model Fractions

Problem to solve:	A fruit bowl holds a range of different fruit, $1 / 3$ of the fruit are apples, $3 / 6$ of the fruit are pears and the rest are oranges. If there are 4 oranges, how many pieces of fruit are there in the bowl altogether?
Bar model:	You need to use your knowledge of equivalent fractions here... The fruit bowl represents the whole bar. $3 / 6$ of the fruit are pears, that is the same as $1 / 2$. $1 / 3$ of the fruit are apples, that is the same as $2 / 6$. There are $6 / 6$ in one whole. Therefore $1 / 6$ of the fruit are oranges. 4 pieces of fruit represents $1 / 6$ of the fruit bowl. This can be shown in the bar model below:
	Therefore each $\frac{1}{6}=4$ piecas of fruit $4 \times 6=24$
Answer in context of the problem:	There are 24 pieces of fruit in the bowl altogether. There are 4 oranges, 8 apples and 12 pears.

Th Hampshire County Council
https://maths.hias.hants.gov.uk $>$ resource , view PDF :

The bar model Algebra

Example: $2 x+3=11$

$$
\begin{aligned}
2 x+3 & =11 \\
2 x+3-3 & =11-3
\end{aligned}
$$

$$
\begin{aligned}
2 x & =8 \\
\frac{2 x}{2} & =\frac{8}{2} \\
x & =4
\end{aligned}
$$

Find out what they know
 4. Card activities

1. Sorting
2. Show me
3. Activities, including dominoes and jigsaws, from ILIM

Give them the tools they need Ratio tables

'A ratio table is a table that displays the constant relationship between two values.'

Ratio tables
 Ratio in its simplest form

fiona.m.allan@gmail.com

Ratio tables
 Ratio

Luca, Jayden and Emma share $£ 360$ in the ratio $3: 7: 8$.
How much money dees Emma get?

Hadused from Edenech Hovember 2017. IF QIS

fiona.m.allan@gmail.com

Ratio tables
 Fractions as percentages

Write 48 out of 80 as a percentage

fiona.m.allan@gmail.com

Ratio tables
 Proportion

3 boxes of chocolates cost $£ 10.50$
Work out the cost of 4 boxes of chocolates
(adapted from Edexcel, June 2018, 1F Q8)

Ratio tables Proportion

Here is a list of ingredients for making 32 flapjacks:

Alexis wants to make 20 flapjacks. How much brown sugar should she use?

Ratio tables
 Percentage increase

Increase 160 by 20\%
Edexcel, June 2022, 1F Q19 (adapted)
Increase 160 by 20\%

- Begin the table by writing the whole amount (160) as equal to 1
- If we're increasing by 20%, then we need to find 20% of 160 anı
- To find 20%, we can divide by 10 and multiply by 2 .
- Finally, add 160 and 32 to get the answer 192.

Ratio tables
 Speed, time and distance

```
Amy left her home at 1 pm and walked to the park. She got to the park at \(1: 45 \mathrm{pm}\).
Amy walked at the speed of 3 mph .
Work out the distance Amy walked.
(idspted from Edexcel, Jane 2019. 1F G9
```

d (miles)	3	1.5	0.75	2.25
t (mins)	60	30	15	45

Find out what they know
 5. Maths jigsaws written by them

- Give out the simplified form of a Tarsia jigsaw.
- Ask the class working in pairs to write a jigsaw on a topic of your choosing
- Each pair/group then cuts up their jigsaw and gives it to the next pair
- Each pair then do the jigsaw they have been given
- Continue passing jigsaws round the room

Give them the tools they need Double number lines

'Double number lines provide a way to visually compare two quantities.'

Double number lines (also known as 'stacked number lines') consist of two single number lines with corresponding pairs of values lined up. A scale on a map, with distances on the map often measured in centimetres and corresponding distances measured in (kilo)metres, is an example of a double number line that students are likely to already be familiar with.

Double number lines

The double number line offers a way of supporting students in exploring multipliers, as they build upon prior strategies involving additive and multiplicative thinking.
For example, if we have a linear relationship that maps 3 onto 7.5 and we want to find what 4 would map onto, we can do this using two different methods.

Double number lines

Compound measures

The double number line can help students to think about problems involving compound measures. For example, if a car has travelled 80 miles in two hours, the distance travelled by the car in one hour gives the average speed of the car in miles per hour. Showing the given information on a double number line enables predictions for how far the car could travel, if it maintained the same average speed, to be made for different lengths of time.

Double number lines

Ratio relationships

Double number lines are a powerful way of representing ratios and, once students have used the double number line in practical contexts, it may be appropriate to introduce more abstract ones. A ratio of 2:3, for example, modelled using a double number line, would have one number line showing the multiples of two and the other the multiples of three, with respective multiples in line, one underneath the other.

Any number on the top number line is in the ratio $2: 3$ with the number below, making it visible that there are infinitely many pairs of numbers in the same ratio and allowing students to develop a greater insight into the nature of ratio relationships. Any two of the numbers from the top number line with the corresponding pair of numbers on the bottom number line can be used to form a ratio table, and this direct link between ratio tables and double number lines can again be emphasised.

In conclusion

- Find out what they know (but NOT through a test).
- Encourage them to realise that Maths is useful.
- Encourage them to realise that they can/will improve.
- Make them work (without realising it!)

What you need now

'This worked for me!'

To be published by the ATM in late 2023/early 2024

Would you like to write a chapter? Or do you know anyone working in FE who should be writing a chapter?

Thank you!

fiona.m.allan@gmail.com

That's Mathematics

[^0]: What Maths have you used today?
 What Maths do you need for your other course(s)?
 Why are you doing Maths GCSE?
 What Maths would you need to be self-employed/run your own business?

