

using random numbers on a spreadsheet

The aims of this session are to enable you to use a spreadsheet to

- simulate throwing dice and tossing coins,
- record your results in a table,
- illustrate your results graphically,
- make comparisons between observed and expected frequencies.

Random Numbers

Random numbers are generated using the function =RAND() as follows:

Random number	Format	Example
Decimal in range 0 to 1	=RAND()	0.2341232786
Decimal in range 0 to 6	=6*RAND()	1.404739672
Integer 0, 1, 2, 3, 4 or 5	=INT(6*RAND())	1
Integer 1, 2, 3, 4, 5 or 6	=INT(6*RAND())+1	2
Integer 0 or 1	=INT(2*RAND())	0

Simulating dice throwing (1): Single die

- Design a spreadsheet to simulate the throwing of a die 100 times.
- Record your results as indicated below.
- Use the function =COUNTIF(Start cell : Finish cell , *x*-cell) to record the frequency of each *x*-value.
- Use the "chart wizard" to produce a bar chart to illustrate the frequency distribution.

	Dice score		
1	6		
2	5		
3	2		
4	2		
5	6		
6	6		
7	1		
8	6		
9	1		
10	5		
11	5		
12	3		
13	5		
14	3		
15	4		
16	1		
17	3		
18	2		
19	5		
20	3		
etc.	etc.		

X	f
1	21
2	15
3	19
4	12
5	20
6	13
Total	100

Simulating dice throwing (2): Sum of two dice

Make a copy of the first spreadsheet and modify it to do the following:

- Design a spreadsheet to simulate the throwing of two dice 100 times.
- Record your results in two columns.
- Add a column to represent the total of the two scores.
- Use the function =COUNTIF(Start cell : Finish cell , *x*-cell) to record the frequency of each *x*-value, where *x* represents the total score.
- Use the "chart wizard" to produce a bar chart to illustrate the frequency distribution.
- Repeat the simulation many times by pressing F9.
- Which is the most popular total? Is it always the same? Should it be the same "in the long run"?
- Extend the simulation to 1000 pairs of values.
- Are there any differences between the pattern for 100 pairs of throws and 1000 pairs of throws?
- Complete the following table for the possible 36 possible totals when two dice are thrown:

+	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

- Use the table to generate a column of expected frequencies for your simulation.
- Plot both "observed frequencies" and "expected frequencies" on your chart.
- Are your "observed frequencies" similar to the "expected frequencies"?

Simulating dice throwing (3): Absolute difference of two dice

Make a copy of the second spreadsheet and modify it to do the following:

- Change the "total" column to an "absolute difference" column.
- Use the function =COUNTIF(Start cell : Finish cell , *x*-cell) to record the frequency of each *x*-value, where *x* represents the absolute difference between the scores.
- Use the "chart wizard" to produce a bar chart to illustrate the frequency distribution.
- Repeat the simulation many times by pressing F9.
- Which is the most popular difference? Is it always the same? Should it be the same "in the long run"?
- Extend the simulation to 1000 pairs of values.
- Are there any differences between the pattern for 100 pairs of throws and 1000 pairs of throws?

Pascal's Triangle

Design a spreadsheet to produce Pascal's Triangle, filling in automatically the empty boxes:

	0	1	2	3	4	5	6	7	8	9	10	Total
0	1											1
1	1	1										2
2	1	2	1									4
3	1	3	3	1								8
4	1											
5	1					1						
6	1						1					
7	1							1				
8	1								1			
9	1									1		
10	1										1	

Simulating coin tossing (1): Number of heads from tossing 4 coins

Make a copy of the second spreadsheet and modify it to do the following:

- Design a spreadsheet to simulate the throwing of four coins 100 times, representing a 'tail' by 0 and a 'head' by 1.
- Record your results in four columns.
- Add a column to represent the total of the four scores.
- Use the function =COUNTIF(Start cell : Finish cell , *x*-cell) to record the frequency of each *x*-value, where *x* represents the number of heads.
- Use the "chart wizard" to produce a bar chart to illustrate the frequency distribution.
- Repeat the simulation many times by pressing F9.
- Which is the most popular number of heads? Is it always the same? Should it be the same "in the long run"?
- Extend the simulation to 1000 groups of tossing 4 coins.
- Are there any differences between the pattern for 100 groups and 1000 groups?
- Use a row of Pascal's Triangle to generate a column of expected frequencies for your simulation.
- Plot both "observed frequencies" and "expected frequencies" on your chart.
- Are your "observed frequencies" similar to the "expected frequencies"?

Simulating coin tossing (2): Number of heads from tossing 5 coins

Make a copy of the last spreadsheet and modify it to simulate the tossing of 5 coins, rather than 4 coins.

- What changes will you have to make to your previous spreadsheet?
- What differences are there in the expected outcomes for each number of heads?

								f	f
	1st coin	2nd Coin	3rd coin	4th coin	5th coin	Total	х	observed	expected
1	0	0	0	1	0	1	0	0	3.125
2	1	1	1	1	0	4	1	20	15.625
3	0	0	0	1	1	2	2	30	31.25
4	0	1	1	1	1	4	3	37	31.25
5	0	1	1	0	0	2	4	13	15.625
6	1	1	0	1	0	3	5	0	3.125
7	1	0	1	1	1	4	Total	100	
8	1	0	1	0	1	3			
9	1	1	0	1	0	3			
10	1	1	0	1	1	4			
11	0	0	0	1	0	1			
12	0	0	1	1	0	2			
13	1	1	0	1	1	4			
14	0	0	1	1	1	3			
15	1	1	0	1	0	3			
16	1	0	1	1	1	4			
17	1	0	0	0	1	2			
18	0	0	0	1	1	2			
19	1	0	0	1	0	2			
20	0	0	0	1	0	1			
21	0	1	1	0	1	3			
22	1	1	1	1	0	4			
23	0	0	1	1	0	2			
24	0	1	1	1	1	4			
etc.	etc.	etc.	etc.	etc.	etc.	etc.			

COIN SIMULATION : Tossing 5 coins : Observed and Expected Frequencies

