

GCSE QUESTIONS IN MATHEMATICS

What would you expect?

On your table are some GCSE questions.

Some are from Foundation papers.

Some are from Higher papers.

Some appear on both.

What makes each of these a 'challenging question'?

F

7 (a)	Simplify.
. ,	ω,	On inputy.

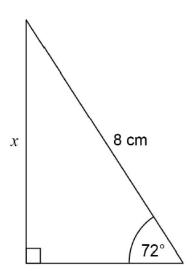
$$7t - 6u + 5t - 4u$$

(b) Factorise.

$$5v + 20w$$

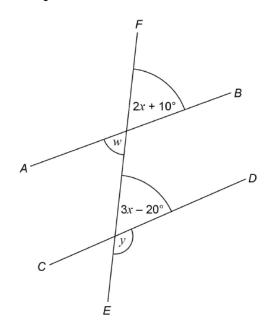
(c) Solve by factorising.

$$x^2 + 10x + 21 = 0$$


$$x^2 + 10x + 21 = 0$$

(c)
$$x = \dots$$
 or $x = \dots$ [3]

29 Use trigonometry to work out the length x.


Not drawn accurately

10 AB, CD and EF are straight lines.

Not drawn accurately

10 (b) In fact,

AB and CD are **not** parallel angle w is 60°

What effect does this have on the size of angle y? Tick a box.

y is bigger

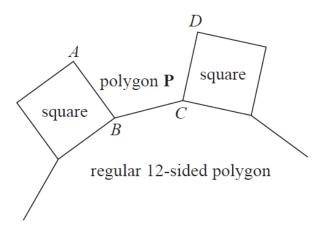
y is the same

y is smaller

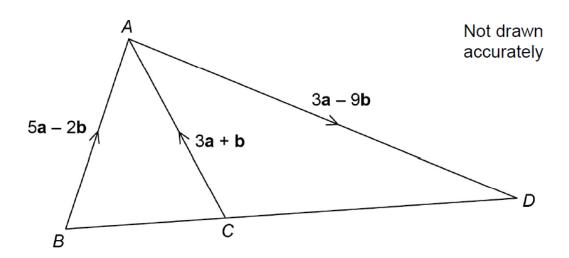
10 (a) Ava assumes that AB and CD are parallel.

What answer should she get for the size of angle y?

[4 marks]


Show working to support your answer.

19 In the diagram, AB, BC and CD are three sides of a regular polygon P.


Show that polygon **P** is a hexagon. You must show your working.

23

Is BCD a straight line?

Show working to support your answer.

22 A, B, C and D are four towns.

B is 25 kilometres due East of A. C is 25 kilometres due North of A. D is 45 kilometres due South of A. North
C ×

A × ×
B

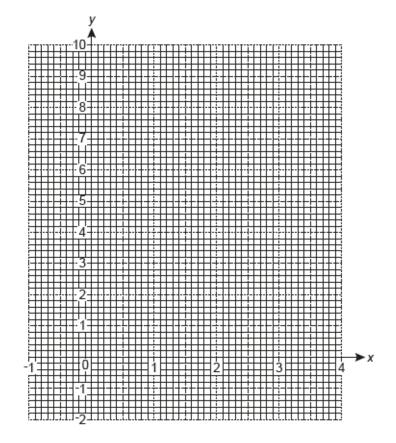
D×

(a) Work out the bearing of B from C.

•H &F

(a)° [2

(b) Calculate the bearing of D from B.



7 (a) Complete the table for $y = x^2 - 2x$.

х	-1	0	1	2	3	4
У	3	0	-1	0	3	

[1]

(b) Draw the graph of $y = x^2 - 2x$ for $-1 \le x \le 4$.

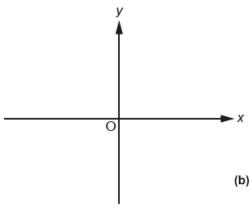
(c) Use your graph to solve $x^2 - 2x = 2$.

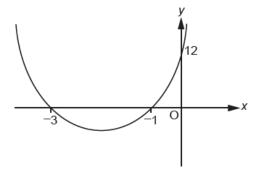
•H & F

7 (a)	The length of a pipe is 6 metres to the nearest metre.

Complete the error interval for the length of the pipe.

[2 marks]


Answer $_$ $m \leqslant length < <math>_$ m



19 (a) Sketch the graph of $y = (x-2)^2 - 3$. Show the coordinates of any turning points.

(b) The sketch shows part of a graph which has equation $y = ax^2 + bx + c$.

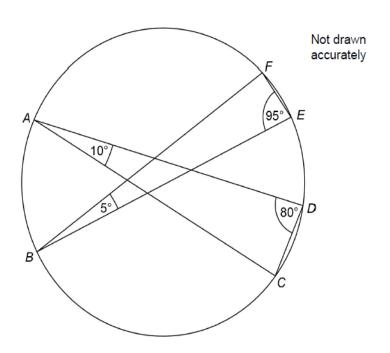
Not to scale

•H

Find the values of a, b and c.

12 The points A, B, C and D lie in order on a straight line.

$$AB:BD = 1:5$$


$$AC:CD = 7:11$$

Work out AB:BC:CD

12 A, B, C, D, E and F are points on a circle.

H

Circle the line that is a diameter of the circle.

[1 mark]

ΒE

AD

AC

BF

2 Solve the simultaneous equations

$$3x + y = -4$$
$$3x - 4y = 6$$

27 Prove that $x^2 + x + 1$ is always positive.

Generalities

Topics that challenged 'Higher' pupils:

Proof

Inequalities

Negative numbers

Units (converting, compound measures)

Ratio and proportion

Geometric reasoning

Generalities

Topics that challenged 'Foundation' pupils:

Metric units

Bearings

Algebra (particularly factorising and substitution)

Simultaneous equations

Fractions, decimals and percentages

Ratio and proportion

